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Abstract

The first half of this paper provides a primer on machine learning and relates it to problems in financial
planning. Machine learning proves capable of handling real world complications and details which 
classical financial planning approaches cannot handle; e.g. taxes, reversion to the mean, and time 
varying yield curves. The second half of this paper provides a case study of the use of reinforcement 
learning for making asset allocation, annuitization, and consumption decisions in retirement planning. 
Machine learning typically delivers within a few percent of the theoretical optimal solution on highly 
abstract problems. Machine learning is found to outperform other approaches for more complex 
financial planning problems whose optimal solution is not known. The value of SPIAs and inflation-
indexed bonds is highlighted by the machine learning approach.
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Introduction

Financial planning problems

Financial planning is hard. You have to make decisions today, in a highly complex, highly uncertain 
environment, with the full impact of those decisions not known until decades later. This is true of asset 
allocation, consumption planning, pension planning, tax planning, long-term care planning, 
annuitization decisions, and reverse mortgages. Worse, each piece of the puzzle affects every other 
piece.

The classical approaches

Modern Portfolio Theory represents a rich body of theory that at first glance appears to allow you to 
make asset allocation decisions. Unfortunately, applying Modern Portfolio Theory to financial planning
has several related problems. First the answer depends on how much risk is appropriate for you, and 
that varies in an unknown way, depending on both the size of your financial assets, and your expected 
future income. Second, Modern Portfolio Theory is unable to handle bonds, or any other asset class that
exhibits mean reversion. Finally, Modern Portfolio Theory is based on optimizing over a single time 
period, not the multiple time periods commonly required in financial planning.

Samuelson (1969) and Merton’s (1969) work on what is known as Merton’s portfolio problem provides
a solution to asset allocation and consumption planning problems over multiple time periods. Merton’s 
portfolio problem is a mathematical problem with a precise mathematical solution. Unfortunately it is 
unable to handle the effects of labor or guaranteed income, which is typically the largest asset held by 
most individuals.

Bellman’s work on dynamic programming performed in the 1950’s is also worthy of mention (Bellman 
2003). Dynamic programming is a numerical technique that delivers the theoretical optimal result, but 
can do so only for simple scenarios. Dynamic programming is able to handle guaranteed income.  But 
trying to extend it to realistically handle bonds, stocks with mean reversion, or partial annuitization 
decisions is computationally extremely challenging.

And as far as incorporating the effect of taxes, all of the classical approaches fall a long way short.

Rules of thumb

Possibly because of the inadequacy of the classical approaches to financial planning problems, 
financial planning often falls back on rules of thumb: follow a glide path while working, employ a 
fixed asset allocation in retirement, use actuarial withdrawal rules, annuitize by age 80, and so on. 
Monte Carlo simulation is helpful in exploring the range of possible outcomes, but Monte Carlo 
software does not optimize strategies, and for the most part there is little by way of optimization in 
financial planning software. The rules of thumb though helpful only provide a partial solution, and as 
we shall see later often significantly under-perform a more sophisticated approach.
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Research Question

The classical approaches to developing optimal financial plans were all developed in the 1950’s and 
1960’s. Might we be able to do better today by employing modern machine learning / artificial 
intelligence techniques? The answer appears to be a resounding yes.

Literature Review

Early work on using machine learning for asset allocation alone includes Neuneier (1996 and 1998) 
and Sato and Kobayashi (2000). Weissensteiner (2009) extended the problem to include determining 
the optimal consumption amount. However Weissensteiner used neuron self-organizing maps rather 
than artificial neural networks, Q-Learning rather than a more modern reinforcement learning 
algorithm, and did not incorporate guaranteed income or taxes.

In a review of machine learning and financial planning Mulvey (2017) found “the area of finance has 
been relatively immune to the ML technology” indicating a lack of uptake of the early research by the 
financial community. More recently Kolm and Ritter (2019) provided an overview of the relationship 
between reinforcement learning and multiple time period financial decision making opening up 
additional avenues for research.

This paper applies more modern reinforcement learning techniques, as exemplified by Proximal Policy 
Optimization (Schulman et al. 2017), to the asset allocation and consumption problem including the 
effects of guaranteed income and taxes.

Machine learning

Machine learning is comprised of three main sub-fields:
 supervised learning – learning to recognize patterns given a labeled training data set; e.g. credit 

scoring given a collection of training data on individuals including a label that indicates whether
they have defaulted on their credit

 unsupervised learning – learning patterns in data that lacks pre-existing labels; e.g. 
recommendation systems for movies, music, or shopping in which individuals that appear to 
have similar tastes are grouped together but no pre-existing labels for these tastes are present

 reinforcement learning – learning to take actions in an environment so as to maximize a reward 
signal; e.g. a computer playing a game of Go or StarCraft

Of the three, reinforcement learning (Sutton and Barto 2018) appears to have the most relevance to 
financial planning. It is also unfortunately the most complicated.

Reinforcement learning concepts

As mentioned, reinforcement learning involves taking actions in an environment so as to maximize 
some reward signal. The environment in reinforcement learning is something that can be observed, and 
interacted with through a discrete series of actions that make up an episode. After each action the 
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environment generates a numerical reward, along with a second signal indicating whether the episode 
is done and a new episode needs to be started.

In the financial planning context the environment will be some sort of financial model of how a client’s
income and assets might evolve over time, typically, until they die.

An observation might consist of a subset of the following parameters: marital status, the client’s age 
and health, current wage income, current or expected Social Security, pensions, and other guaranteed 
income, the size and possibly makeup of their investment portfolio, the value of their other assets 
including their home, liabilities, future expected expenses, when they plan to retire, the availability of a
401(k) scheme, the degree of any bequest motive, an assessment of whether stocks are fairly valued, 
the current interest rate yield curve, the inflation rate, and how the client feels about variability and 
uncertainty in consumption, i.e. their risk aversion. 

An action might consist of a subset of the following: consuming a particular dollar amount in the 
current time period, an asset allocation to adopt, the type and duration to use for bonds, the amount of 
SPIAs to purchase, the amount to invest or withdraw from tax free or tax deferred accounts, long-term 
care purchases, and whether to obtain a reverse mortgage.

The reward will be the utility derived from consuming the amount specified by the most recent action. 
Utility is a concept from economics. It is the well-being or satisfaction derived from consumption. If 
the utility of consuming $50,000 was 1, then the utility of consuming $100,000 might be 1.5. This is 
because satisfaction saturates at higher consumption levels. For retirement planning, where we are 
typically not concerned with maximizing pre-retirement well-being, the pre-retirement rewards will all 
be zero.

A policy is a mapping from observations to actions. The goal of reinforcement learning is to find a 
policy that attempts to maximize the expected sum of all the rewards from each episode. In the 
financial planning context the goal of reinforcement learning is to find a policy that maximizes well-
being over the lifecycle.

Both the values making up the observations and the actions in reinforcement learning may be made up 
of discrete or continuous values. A yes/no decision to buy a SPIA or Long-Term Care insurance policy 
are a good example of discrete values, while portfolio size, consumption, and the optimal SPIA 
purchase amount are examples of a continuous values. In financial planning the policy function 
primarily maps from continuous observations to continuous actions. Problems like financial planning 
where the action space is continuous are referred to as continuous control problems.

Reinforcement learning algorithms

An algorithm is a detailed step-by-step procedure for solving a problem that can be implemented using 
a computer. A difficulty with mastering reinforcement learning is there are many different algorithms, 
with more being developed every year, and they defy an orderly categorization scheme.

Many reinforcement learning algorithms follow an actor-critic model in which there is a policy 
function (the actor) which maps from an observation to action to take, and a value function (the critic) 
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which maps from observation to a number, the reward-to-go, that specifies how well the policy 
function is expected to perform over the remainder of the episode. Both the policy function and the 
value function are described by a large set of weights. In the financial planning context the policy 
function might map from age and portfolio size to the recommended asset allocation and consumption, 
while the value function maps from age and portfolio size to a dollars per year value representing how 
well the policy function performs.

Perceptrons are highly stylized mathematical models of neurons. A single perceptron takes a series of 
numerical inputs, i1, i2, i3, …, multiplies each by the weight for that input, w1, w2, w3, …, sums the 
products and passes the result though an “activation” function, f, producing the output value:

o = f(w1 * i1 + w2 * i2 + w3 * i3 + …)

The role of the activation function is to apply a non-linearity to the result. It may be as simple as:

f(x) = max(0, x)

 or as complex as the hyperbolic tangent function.
 
A feed-forward network is one in which information flows in a single direction; there is no feed-back. 
Historically multi-layer feed-forward networks of perceptrons forming an artificial neural network have
been used for the policy and value functions. The first layer is the input layer that simply comprises the 
observation. Each subsequent layer consists of a set of perceptrons, each of which take the results of 
the prior layer as inputs, apply their  own weights, and pass the result through the activation function, 
to produce a set of outputs. The final layer, the output layer, often lacks an activation function.

For continuous control problems the layers are typically fully connected, meaning that each perceptron 
in a layer receives inputs from every one of the outputs from the layer below. The layers of the network
excluding the input and output layers are termed the hidden layers. An artificial neural network with 2 
or more hidden layers is termed a deep neural network. For playing games and image processing tasks 
anywhere from 20 to 200 hidden layers might be usual. For financial planning because of the 
smoothness of the surfaces being modeled, a far more modest 2 hidden layers are typically appropriate. 
For the artificial neural networks constructed in the second half of this paper both layers are comprised 
of 256 perceptrons.

A key concept in reinforcement learning is the notion of advantage. If at some point the expected value 
of future rewards is 10, but after performing a timestep you receive a reward of 4 and the expected 
value of future rewards is now 8, the advantage would be 4 + 8 – 10, or 2. More formally, advantage is 
the difference between the observed reward at the end of some timestep plus the value of the value 
function, and the value of the value function prior to that timestep. A large advantage signals a large 
divergence between the current value function and the true value function for the current policy 
function.

Both the policy and value functions are iteratively refined. The weights are initially assigned random 
values. The policy function is then used over multiple episodes to generate a large batch of experiences.
For each timestep in the batch the advantage is computed. These advantage values then get used to 
update the policy graph weights to maximize the return of the policy. At the same time the distance 
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between the observed rewards over the remainder of an episode and the value function’s predicted 
reward-to-go is typically used to update the weights of the value function to maximize its accuracy.

The weights are updated by performing “hill climbing” on the function being optimized. Hill climbing 
is an optimization technique that attempt to find a maximum value by looking at the slope of the 
surface being optimized, figuring out the direction which points the most uphill, taking a small step in 
that direction, then looking at the slope again, and taking another small step. Over many iterations the 
weights are adjusted, the policy function gradually converges towards the optimal policy, and the value 
function converges to the expected reward-to-go for that policy function.

An important idea in reinforcement learning is the concept of exploration versus exploitation. It turns 
out it is necessary to add a degree of noise into the training procedure to ensure the policy algorithm 
doesn’t get stuck exploiting a local maximum, but explores other nearby actions.

Another concept is that of bias. Reinforcement learning may produce results that are biased in one 
direction or another. This can be the result of the credit assignment problem. It isn’t always possible for
the reinforcement learning algorithm to know that poor results being experienced now are the result of 
overly aggressive asset allocation decisions many time periods earlier. As a result it may produce 
recommended asset allocations that are 0 to 20% more aggressive than warranted. When necessary this 
bias is measured and manually corrected.

Reinforcement learning in practice

In general machine learning requires a lot of training data. The availability of data can be a limiting 
factor in training machine learning models. For financial planning though it is possible to simulate a 
financial model and generate as much data as required on the fly.

Training a reinforcement algorithm takes a lot of computer time. To train the models used in the next 
section required training for a grand total of almost 7 billion simulated years on 9 four core servers for 
3 days.

Once trained, the inference process is very fast. Inference involves looking up the recommended asset 
allocation and consumption policy given an observation. It takes around 10 milliseconds to look up a 
financial plan for a client, and the vast majority of this time involves marshaling the data into a format 
the policy function expects. Application of the policy function itself takes less than a millisecond.

It often isn’t enough though to tell a client what they should do. Often it is important to give the client a
sense of what to expect in the future. For this Monte Carlo simulation of the recommendations may be 
necessary. This is a slower process that can take anywhere from 10 seconds to 10 minutes. The 
performance bottleneck here is not the speed of the policy function, but the speed of the financial 
model being simulated.

The results from reinforcement learning are frequently very good, but they are not optimal. Limits on 
the quality of the results are set by the size of the neural network model in terms of the number of 
weights, and by the amount of training performed.
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Applying machine learning to retirement planning

In this section a financial model for retirement planning is developed, validated against a classical 
approach, refined in ways the classical approach can’t handle, and then compared against other 
approaches for both a retiree and over the lifecycle.

Results were produced by first using reinforcement learning to train a set of 7 generic models, each 
capable of handling a broad range of financial scenarios divided up based upon risk aversion, 
retirement status, and whether SPIA purchases are allowed. The performance of the models was then 
evaluated by performing Monte Carlo simulation of specific scenarios.

Mortality

For training the pre-retirement model, an initial age of 20 was used. For training the retired model, an 
initial age of 50 was used. This encompasses training with almost the full range of age possibilities 
because the financial model increases the age after each reinforcement learning action.

The Social Security Administration AS 120 female cohort life table was used to determine the 
probability of being alive in each year up until age 121. The financial model performed simulations up 
to the maximum age for each episode and the utility rewards were weighted by the probability of being 
alive. This allows the capture of the full range of mortality experiences in a single episode.

Poor or good health was simulated by increasing or reducing the age by several years to produce an 
effective age before looking up the mortality associated with this age in the life table. Health plays a 
key role in determining the suitability of the purchase of SPIAs.

Since actions are based on observed remaining life expectancy, not age, there is little need for the use 
of a separate male life table, or life tables for different cohorts when training.

During evaluation a female with a life expectancy 3 years longer than predicted by the life table was 
used. This reflects the good health of typical financial planning clients.

Retirement and guaranteed income model

Retirement is assumed to occur at age 67, and $20,000 per year of Social Security received during 
retirement. During training a broad range of retirement age and income possibilities was considered.

Relative Risk Aversion (RRA)

Risk aversion specifies the degree to which the client is averse to variability and uncertainty in future 
consumption. A relative risk aversion of γ implies a utility, U, given by:

U = C 1 - γ / (1 – γ)

where C is the consumption amount. For every 1% increase in consumption there is a γ% reduction in 
marginal utility, that is utility per dollar of incremental consumption.
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In this paper 3 RRA values will be considered: 1.5, 3, and 6. The higher the RRA value the more risk 
averse the client is.

Unlike risk aversion in Modern Portfolio Theory, which is totally dependent on the client’s wealth and 
fixed income expectations which vary over time, relative risk aversion is independent of wealth and 
portfolio size, and only very weakly, if at all, dependent on consumption level. This greatly simplifies 
determining how much risk is appropriate to take. The client simply has to pick a single number. 
Despite this, determining the most appropriate risk aversion to use is still a difficult decision.

Certainty Equivalent (CE)

Sometimes papers comparing financial outcomes overwhelm with a sea of numbers: worst case, best 
case, percentiles, average, and median values. Certainty equivalents are a technique for boiling down 
this sea of numbers to a single number against which meaningful comparisons can be made.

The certainty equivalent of a consumption strategy is the constant fixed consumption that has the same 
expected utility as the uncertain variable consumption of the strategy.

Certainty equivalents are highly useful and will be used for all comparisons made in this paper.

Validation results

Before diving in to the rich financial model that reinforcement learning is capable of optimizing, it is 
worth pausing to compare the results of reinforcement learning to dynamic programming.

For these scenarios stock returns are log-normally distributed with a 6.5% arithmetic mean real return 
and 17.4% volatility (geometric return 5.1%), and bond returns are also log-normally distributed with a 
1.0% arithmetic real return and 11.0% volatility. Except for the lower anticipated return on bonds these 
values were taken from the global historical record reported in the 2019 Credit Suisse year book 
(Dimson et al. 2019).

In these scenarios the results of a generically trained reinforcement learning model trained against the 
simple stock and bond model are compared against the optimal results produced using dynamic 
programming. At each timestep the reinforcement learning observation is the life expectancy 
remaining, and investment wealth as a fraction of investment wealth plus the present value of future 
guaranteed income. The action consists of the amount of wealth to consume and the asset allocation to 
use. The client’s age is 67, they are retired, receive $20,000 per year of Social Security, and a number 
of different possible initial portfolio sizes are considered. The reinforcement learning model is trained 
with both taxable and tax-free assets and income. At evaluation time all assets and income are tax free. 
The results are shown in Table 1. The standard error of reinforcement learning CE measurement is 
around 0.3%.
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RRA Initial portfolio Reinforcement
learning CE

Optimal CE Relative
performance

1.5 $200,000 $32,615 $32,728 99.7%

1.5 $500,000 $49,802 $49,867 99.9%

1.5 $1,000,000 $77,346 $77,350 100.0%

1.5 $2,000,000 $131,096 $131,058 100.0%

3 $200,000 $31,503 $31,508 100.0%

3 $500,000 $45,976 $46,023 99.9%

3 $1,000,000 $68,039 $68,246 99.7%

3 $2,000,000 $109,305 $110,318 99.1%

6 $200,000 $29,880 $29,987 99.6%

6 $500,000 $40,968 $41,316 99.2%

6 $1,000,000 $57,286 $58,040 98.7%

6 $2,000,000 $87,060 $88,794 98.0%

Table 1. Comparison of the results of reinforcement learning to the optimal results computed using 
dynamic programming.

In every case the results of reinforcement learning are within a few percent of the optimal solution. 
This is highly encouraging. Reinforcement learning knows nothing of log-normally distributed returns. 
It is therefore hoped that by adopting richer stock and bond models reinforcement learning might 
equally do well at optimizing them.

Stock model

Stock returns adhere to the global historical record reported in the Credit Suisse year book.

Shiller (2015) argues convincingly that stocks at times exceed or fall below their rational valuations. As
a result, for every 10% stocks are over-valued or under-valued a 1% reduction or increase in expected 
return is applied. Stock volatility follows a GJR-GARCH model meaning that volatility has an element 
of predictability. The GJR-GARCH model is calibrated to the historical returns over the period 1970-
2018, and the residuals from this calibration exercise are used to provide the stochastic returns. This 
means stock returns display fat tails; i.e. skew and kurtosis.

The parameters used here are only a rough estimate of the precise situation. Nonetheless, by using these
estimates we are likely to do better than by ignoring them.

Observations of the environment include the stock price to fair price and the trailing volatility. 
However, to be fair, a 15% standard deviation noise factor is added to the observed stock price to 
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reflect the difficulty in assessing whether stocks are truly fairly valued. When evaluating performance 
stocks are initially fairly valued.

Bond model

Bond returns correspond to the returns expected from holding bonds in a bond fund.

For the bond model a Hull-White bond model is employed. This means there is a yield curve and the 
yield curve varies over time in a non-linear fashion depending on the short interest rate. The Hull-
White yield curve is calibrated to the average Treasury yield curve over the period 2005 – 2018. The 
initial short real rate is 1.0%, and the initial inflation rate is 1.6%. Nominal rates are constructed from 
the real yield curve and the inflation expectations curve.

The Hull-White model means bonds as an asset class are less risky than they first appear. Returns 
exhibit a degree of mean reversion. When rates go up, producing poor returns, it is more likely that 
they will fall in the future, producing good returns, and vice versa.

Asset class standard errors

With little more than 100 years of high quality returns data there is considerable uncertainty as to the 
long run mean returns of the asset classes. The Credit Suisse yearbook reports a 1.6% standard error in 
the reported mean stock return. To recognize this each episode is given a different expected mean 
return with a 1.6% standard deviation. On top of this expected mean return the stock volatility model is 
applied.

Similar adjustments are applied to the average long run short rate of bonds and the inflation rate.

SPIA model

SPIAs are priced using the Society of Actuaries IAM Basic Table and a Money’s Worth Ratio (MWR) 
of 98% against Treasury bonds after state guarantee association taxes. Annuity Experience Report 
contract age adjustments are applied to reflect the fact that a recent SPIA purchaser is likely to be in 
better health than someone of the same age that purchased a SPIA 10 years ago.

An MWR of 98% against Treasuries is reasonable and reflects the competitive SPIA market in the U.S..
When priced against corporate bonds, as might be held by an insurance company, SPIAs have a lower 
MWR. The bond model currently only includes Treasury bonds, not corporate bonds, hence the use of 
Treasury bonds in the SPIA pricing model.

SPIAs may only be purchased from retirement through age 90, with a minimum purchase amount equal
to 10% of total assets, and a 2% annual increase to compensate for the effects of inflation.

Because the bond model is time varying, the price of SPIAs has to be recomputed at every time period.
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Tax model

Both income and wealth are divided into tax free, tax deferred, and taxable amounts. Individual 
allocations to each asset class are maintained for taxable assets. For simplicity average cost is used as 
the cost basis method for changes in share holdings.

The tax model is currently based on the U.S. income tax code for 2020. Many simplifications are 
obviously made, but the level of detail is still substantial. A progressive tax rate structure is used with 
the standard deduction, special taxation rules applied to Social Security payments, capital gains tax 
rates, capital loss carry forwards, and the net investment income tax. 401(k) and IRA contributions are 
allowed and the IRA catch-up amount is available for older workers.

State and local taxes on the other hand are greatly simplified. Based on national averages, a state, local,
and property tax rate of 11% of income above the standard deduction is applied. Improving much past 
this would require diving into the details of how taxes are assessed in every state, a formidable task.

Comparison in retirement

To assess the performance of reinforcement learning Monte Carlo simulations of a 67 year old retiree in
good health with a $1,000,000 investment portfolio were performed. To make the problem challenging,
the retiree’s relative risk aversion was 6. The retiree was able to invest in nominal Treasury bonds and 
stocks, but not SPIAs. Table 2 compares reinforcement learning to a range of alternative withdrawal 
schemes with constant asset allocations. All of these alternative schemes have parameters, such as the 
initial consumption amount, asset allocation, and assumed rate of return. For each scheme a trial and 
error search was performed to find the optimal parameter values. This took several days. Many of these
schemes were proposed without consideration of guaranteed income or taxes. This needed to be 
corrected. Consumption amounts were computed by applying the scheme to an estimate of the after tax 
portfolio size and then adding an estimate of the after tax guaranteed income. For the fixed asset 
allocations, a nominal bond duration of 20 years was used, reflecting the long duration typically 
selected by reinforcement learning.

Withdrawal scheme Asset allocation CE

Percent rule Fixed $44,330

Guyton’s Rule 2 Fixed $45,003

Target Percentage Adjustment, life expectancy 35 Fixed $47,708

PMT, life expectancy 35 Fixed $49,763

Guyton Klinger, life expectancy 35 Fixed $50,650

PMT, dynamic life expectancy Fixed $51,945

Extended RMD Fixed $54,086

Blinded reinforcement learning Dynamic $55,498

Reinforcement learning Dynamic $56,690

Table 2. Comparison of strategies for a retiree, RRA=6.
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The reader is referred to Bengen (1994), Guyton (2004), Zolt (2013), and Guyton and Klinger (2006) 
for a description of some of these rules. PMT uses the payout amount required to deplete the portfolio 
over the remaining life expectancy assuming some fixed rate of return. Extended RMD bases 
withdrawals on the IRS required minimum distribution table extended back to age 67. It uses the old 
2002 RMD table, not the revised table currently proposed by the IRS to take effect in 2021. Blinded 
reinforcement learning is reinforcement learning blinded to observation of the stock price, volatility, 
and real interest rate.

Reinforcement learning outperforms all of the schemes considered.

For this scenario Extended RMD performs very well. But that is just this scenario. For a different initial
portfolio size, a different health level, or a different risk aversion, it may not perform as well. And that 
is the issue. Testing out different schemes and parameter values to find the one that performs the best is 
time consuming. Reinforcement learning on the other hand appears able to deliver a near optimal 
strategy in milliseconds.

The small difference between blinded reinforcement learning and reinforcement learning in which it is 
possible to take advantage of the stock price, volatility, and real interest rate may possibly point to the 
difficulty of successfully performing tactical asset allocation.

Financial instruments comparison

Reinforcement learning can be used to shed light on the appropriate financial instruments to use in a 
retirement portfolio. Table 3 shows the results for the previously described retiree scenario. Treasury 
bonds plus 1% is intended as a generous estimate of the return for corporate bonds.

Instruments Reinforcement learning CE

Stocks, Treasury bonds $56,690

Stocks, Treasury bonds + 1% $58,046

Stocks, Inflation-indexed Treasury bonds $58,526

Stocks, Inflation-indexed Treasury bonds, SPIAs $63,527

Table 3. Certainty equivalents produced by reinforcement learning with different financial instruments 
for a retiree, RRA=6.

There is a strong case to be made for the use of SPIAs in retirement assuming no bequest motive. There
is also a weaker case for the use of inflation-indexed bonds. It is also worth noting reinforcement 
learning selected long duration bonds: 16 years for nominal bonds, and 20-22 years for inflation index 
bonds.

Comparison over the lifecycle

Consider a 30 year old female in good health and initially with no assets. She earns $80,000 per year 
before tax, and consumes $50,000 a year after tax. She plans to retire at age 67 and receive an inflation 
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adjusted $20,000 per year in Social Security. She invests in stocks, inflation-indexed Treasury bonds, 
and once retired SPIAs. Table 4 presents the results of using several different strategies assuming an 
RRA of 6. The glide path is 90% stocks until 25 years before retirement, sloping down to 40% stocks at
retirement and beyond. Optimal values of all strategy parameters were chosen.

Asset allocation Withdrawal scheme Annuitization scheme CE

Fixed Extended RMD 100% at fixed age $61,644

Glide path Extended RMD 100% at fixed age $62,663

Reinforcement learning Dynamic Dynamic partial annuitization $67,032

Table 4. Comparison of strategies over the lifecycle, RRA=6.

Once again reinforcement learning delivered results significantly in excess of the other strategies.

Discussion

Reinforcement learning is a rapidly evolving field. Already it appears capable of delivering results that 
are superior to other approaches. And it is likely that the algorithms in use today are only going to be 
improved upon in the future.

Despite the promise of reinforcement learning, one of the problems with reinforcement learning today 
is the variability in the recommendations. Near the optimal asset allocation, a 10% change in asset 
allocation might only result in a 0.5% change in CE. Reinforcement learning does well when the 
difference in performance between different alternatives is large, but less well when the difference is 
small. Consequently different neural networks trained on the same data may produce recommended 
asset allocations that differ by 10% or even 20%. The truth is this difference barely matters to 
outcomes, but the lack of consistency may appear unprofessional to a client if they are told they should 
be at 60% stocks one year and 80% the next.

Another issue is the black box nature of the approach. There aren’t any tools available to answer 
questions like “Why do you recommend I annuitize 50% of my assets at age 70?”. You simply have to 
trust the results of the machine learning approach.

There is a danger of some people believing the results too much simply because they were produced 
using “artificial intelligence”. Yes, machine learning does a good job of solving the asset allocation and
consumption problem, but it does so with a very broad brush, that provides an outline of the solution, 
but not the details. It knows nothing of tax lots, specific id, and deciding which lots to sell. Similarly 
the allocation of assets across taxable, tax-deferred, and tax-free accounts is currently performed using 
hard coded rules of thumb (stocks gravitate toward taxable; bonds gravitate towards tax-deferred). A 
savvy financial planner can add value by filling in the details, and deciding when rules of thumb should
be broken.

Finally there is the issue of heuristics, versus optimal solutions. How confident can we be in a tool that 
appears to do very well in practice, but lacks any sort of ironclad guarantees. This is particularly 
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important for scenarios that lie at extremes that might not have been encountered frequently, or at all 
when training the model. Here, some suspicion of the results is warranted.

Availability

The website www.aiplanner.com provides access to reinforcement learning trained financial planning 
models. It is quick to set up and run. The website takes as inputs high level data about life expectancy, 
assets, liabilities, and retirement goals, and produces consumption, asset allocation, and annuitization 
recommendations, along with the results of a Monte Carlo simulation of the recommendations. 
AIPlanner is described in more detail in Irlam (2018 and 2020).

Conclusion

Reinforcement learning appears to be the first fundamentally new approach to financial planning in 50 
years. It is capable of generating very high quality financial plans for complicated scenarios involving 
guaranteed income, rich stock and bond models, assets, liabilities, and taxes, for pre and post retirement
scenarios. No other tool or technique comes close to being able to do this. Often the plans come within 
a few percent of the theoretical optimal result. Reinforcement learning outperforms all other considered
alternative approaches. In the past financial planning was constrained by the complexity of the 
financial planning problem. This no longer appears to be the case. The biggest issue in applying 
reinforcement learning today might be in determining the accuracy of the financial
model used compared to the real world.
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